THE CONCEPTS OF DESANTARA AND YOJANA IN INDIAN ASTRONOMY

Padmaja Venugopal
Department of Mathematics, SJB Institute of Technology, Kengeri, Bangalore-560 060, India. Email: venugopalpadmaja@gmail.com
\section*{K. Rupa}
Global Academy of Technology, Rajarajeshwari Nagar, Bangalore-560098, India. Email: shr_rupak@yahoo.co.in
\section*{S.K. Uma}
Department of Mathematics, Sir MVIT, Bangalore-560 157, India. Email: uma.sreenath@yahoo.com

and
S. Balachandra Rao
Gandhi Centre of Science and Human Values, BharatiyaVidyaBhavan, \#43/1, Race Course Road, Bangalore-560 001, India.
Email: balachandra1944@gmail.com

Abstract

In this paper we discuss in detail the concepts of (i) the deśäntara correction to the mean longitude of a heavenly body, and (ii) the linear distance, called yojana. We consider the definitions and procedures given in classical Indian astronomical texts like the Ārybhațīyam, Brāhmasphuțasiddhānta, Khaṇ̣akhādyaka, Laghu- MahāBhāskarīya, Siddhānta Śiromani, Grahalāghavam and Tantrasañgraha. From our findings we notice that there were apparently two distinct schools (paksas), which were led by Ärybhața (b. CE 476) and Brahmagupta (ca. 628), who used 1050 and 1581 yojana, respectively, for the diameter of the Earth. Keywords: Indian astronomy, deśāntara, yojana

1 INTRODUCTION

Since the Earth rotates about its own axis from west to east sunrise takes place earlier for places with eastern longitudes and later for those with western longitudes. In classical Indian astronomical texts, the time during a day was reckoned from the instant of local sunrise. But the procedures for the computation of the mean positions of the heavenly bodies were given in the texts with reference to the mean sunrise for the prime meridian of Ujjayinī (in present-day Madhya Pradesh). The meridian through Ujjayinī was assumed to pass through a few more important places, like Kurukșetra, and intersect the terrestrial equator at Lañkā.

Therefore while computing the mean positions of the heavenly bodies for a given local time at a given place a correction, called the deśāntara saṃskāra, had to be applied to account for the longitudinal difference between that place and Ujjayinī. The computation of the deśāntara correction needed the longitudinal difference between the given place and the prime meridian through Ujjayinī. In the classical texts this distance was expressed in terms of the linear difference between the two places. For this purpose, the Earth's circumference in yojanas was required. At that time, there were two main schools (pakṣas), and they took the

Earth's circumference to be about 3300 yojanas and 4800 yojanas respectively

2 THE DESĀNTARA ACCORDING TO DIFFERENT TEXTS

In Indian astronomy linear distances were measured in yojanas. In Figure $1 P Q A C$ is the prime meridian through Ujjayinī. PDBQ is the meridian

Figure 1: The longitude and latitude lines of a given place (diagram: Padmaja Venugopal).
and through the observer. $A B E F$ is the terrestrial equator with circumference given as 3300 yojanas in the Ārya pakṣa. CDGH is a latitudinal circle corresponding to the latitude ϕ. The radius of this circle (a small circle) is the radius of the sphere (R) multiplied by $\cos \phi$. The circumference of this latitudinal circle $\left(C_{0}\right)$ is given by
$C_{0}=(3300 \times R \cos \phi) / R=3300 \cos \phi$.
The time taken by the Earth to complete one revolution $\left(360^{\circ}\right)$ is 60 ghattīs, and this corresponds to one full rotation of the latitudinal circle C_{0}.

According to the Tantrasañgraha of Nīlakaṇṭha Somayājī (Ramasubramanian and Sriram, 2011) the equatorial circumference is about 3300 yojanas, and so the equatorial radius is $3300 / 2 \pi=525.211 \approx 525$ yojanas. The Earth's known radius is approximately 4000 miles. Therefore, 525 yojanas ≈ 4000 miles, and 1 yojana $=160 / 21=7.619 \approx 7.6$ miles.

Table 1: Deśāntara corrections for heavenly bodies (after Sastri, 2006).

Heavenly Bodies	Mean Daily Motion	Deśāntara Correction
	- "	, "
Ravi	0059	0028
Candra	$\begin{array}{llll}13 & 10 & 35\end{array}$	0625
Kuja	0059	0015
Budha	$04 \quad 0532$	0159
Guru	000459	$00 \quad 02$
Sukra	$01 \quad 3608$	$00 \quad 47$
Śani	$00 \quad 0200$	$00 \quad 01$
Candrocca	$00 \quad 0641$	$00 \quad 03$
Rāhu	$00 \quad 0311$	$00 \quad 03$

2.1 The Deśāntara According to the
 Ganakānanda

The Gaṇakānanda was authored by Sūryācārya, the son of Bālāditya, who came from the Andhraregion. Thetext was based on the Sūryāsiddhānta, and it belongs to the Saurapaksa. The epochal date of the text is CE 16 March 1447. The currently available text is a single Sanskrit text in the Telugu script, edited and published by Chella Lakshmi Narasimha Sastri from Machalipatnam in the Andhra region and reprinted in the year 2006:

lakāvantīpurīmadhyarekhāpūrvāparast

hitai I
yojanairgatayonighnaḥkhakhāṣtanigam
ai r hrtāh II (Sastri, 2006).
The deśāntara is obtained in arc seconds by multiplying the yojanas of a given place from the north-south line (rekhā) passing through Lañkā and Avantī Ujjayinī by the mean daily motion and dividing by 4800 . Taking the Earth's circumference as 4800 yojanas we get the Earth's radius as $4800 / \pi=763.94$. Assuming the Earth's radius as 800 yojanas, its circumference is $2 \pi \times$ $800=4800$ yojanas. According to Sastri (2006),
the yojanas of Machilipatanam is 39 . So the deśāntara correction for Ravi is (59'08"/4800) × $39=0^{\prime} 28^{\prime \prime}$. Similarly, deśāntara corrections for other bodies were computed, and are listed in Table 1.

In his commentary, Yallaya, the well-known fifteenth century Andhra astronomer, gives the distance of Skandaśomesvara from the Ujjayinī meridian as 36 yojanas according to the Sūryāsiddhānta (Gangooly, 1989;Parameśvara, 1957). But according to Ārybhața (Sambasivasastri, 1977; Shukla and Sarma, 1976) it is $237 / 15$ yojanas. In our modern reckoning, Skandaśomesvara has a longitude of $79^{\circ} 50^{\prime} \mathrm{E}$ and a latitude of $15^{\circ} 30^{\prime} \mathrm{N}$. The longitudinal distance of this place is $04^{\circ} 05^{\prime}$ to the east of Ujjayini (which has a longitude of $75^{\circ} 45^{\prime} \mathrm{E}$). Therefore,
$R=\left(360^{\circ} \times 36\right) /\left[2 \pi \cos \phi\left(L-75^{\circ} 45^{\prime}\right)\right] \approx 524$ yojanas,
and according to Yallaya the Earth's circumference is $3292 \approx 3300$ yojanas (Gangooly, 1989; Parameśvara, 1957).

2.2 The Earth's Diameter and Circumference According to the Khandakhādyaka

The Khanḍakhādyaka of Brahmagupta (CE 665) follows Ārybhaţa's Ārdharātrika system (see Chatterjee, 1970; Sengupta, 1934). In the Gitika pāda of the Āryabhațīyam the description of the deśāntara correction is given in Śloka 7, which is quoted below:
nr- ṣi yojanaṃ ñilā bhūvyāso'
rkendvorghrñā giṇa ka meroḥ| (Shukla
and Sarma, 1976, Chapter 1: śl. 7).
According to the Āryabhațīyam (Sambasivasastri, 1977; Shukla and Sarma, 1976: Chapter 4, ssl. 39, 40) the Earth's diameter is 1050 yojanas. Therefore, the circumference is $1050 \times$ $\pi=3298.6722 \approx 3300$ yojanas (the modern value is 3956.55 miles), and 1 yojana $=7.53628 \approx$ 7.5 miles. Note (i) If we take the circumference as 3200 yojanas, then the radius is 509.2958 yojanas $=7.76866$ miles; and (ii) Sometimes for the purposes of easy calculation, the Earth's circumference is taken as 3200 yojanas.

2.3 The Deśāntara According to the Grahalāghavam

Gaṇeśa Daivajña (CE 1520) in his Grahalāghavam refers to the deśāntara in Chapter 1 as:
nijanijapurarekhāntastitadyojanaughād rasalavamitaliptāḥ:
svarṇamindupareprāk II (Rao and Uma, 2006: madhyamādhikara, śl. 9).

To find the deśāntara correction for the Moon, the distance of the given place from the Ujjayinī meridian in yojanas is divided by 6 to
get it in liptās (kalās). Gaṇeśa takes, for easy calculation the Moon's daily motion as 800^{\prime} and the Earth's circumference as 4800 yojanas (see Pandey, 1994; Rao, and Uma, 2006). Therefore the deśātara correction is (yojanas \times daily motion) $/ 4800=y o j a n a s / 6$ kalās. We know that the equatorial radius and polar radius are respectively 3963.2 and 3949.91 miles. The average of the two values is 3956.55 miles. Bhāskara Il's value for the circumference of the Earth is 4967 yojanas (Mishra, 1991). Therefore, the radius is 790.5 yojanas $=3956.55$ miles. Therefore, 1 yojana $=5.00512334$ miles ≈ 5 miles. Along the small circle through Kāśī the arc length is $90^{\circ} 37^{\prime} 50^{\prime \prime}$.

Note that (i) in his Hindi commentary on the Grahaläghavam Joshi (1981:30) takes the distance of Kāśī as 64 yojanas quoting the prācīna āchāryas); and (ii) Pandey (1994: 17) takes 1 yojana as 8 miles. This is not correct. According to the Grahalāghavam, it works out at about 5 miles.

According to the Tantrasangraha (Ramasubramanian and Sriram, 2011) the equatorial circumference is 3300 yojanas and hence the equatorial radius is $3300 / 2 \pi=525.211 \approx 525$ yojanas. Since the Earth's known radius is approximately 4000 miles, 525 yojanas $=4000$ miles. Therefore, 1 yojana is $160 / 21=7.619 \approx$ 7.7 miles.

According to the Vateeśvara Siddhānta \& Gola (Shukla, 1985-1986: 135) the Earth's equatorial diameter is 1527 yojanas. The Earth's circumference is $(1054 \times 3927) / 1250=3311.2464$ yojanas ≈ 3311 yojanas.

In his Khaṇ̣akhādyaka Brahmagupta gives the Earth's circumference as 4800 yojanas (Chatterjee, 1970(1): 50). But in the Uttara Khanḍakhādyaka he gives the correct method to obtain the circumference of a small circle through the place. Here he gives the circumference of the small circle as $5000 \cos \phi$ yojanas. Therefore, the Earth's radius is $5000 / 2 \pi=795.77$ yojanas $=5000 / 2 \sqrt{ } 10=790.569$ yojanas.

2.4 The Karanakutūhalam of Bhaskara II

In his Karanakutūhalam Bhaskara II considers the circumference of the Earth as 4800 yojanas (Mishra, 1991). To cover 4800 yojanas the Earth takes 60 ghatis. For 1 yojana the time taken is therefore $60 / 4800=1 / 80$ ghatīs. Therefore in his translation of the Süryasiddhānta, Burgess gives the Earth's circumference for the circumference of a small circle through Washington (ϕ $\left.=38^{\circ} 54^{\prime}\right)$ as $2 \pi r \cos \phi=5059.556 \times \cos \left(38^{\circ} 54^{\prime}\right)$ $=3937.56$ yojanas (Gangooly, 1989: 43-45, śl. 60-61). The Karanakutūhalam defines the deśāntara correction (Mishra, 1991: Chapter 1, śl. $15)$ as (yojanas/90) \times daily motion.

Values for the circumference of the Earth in yojanas vary according to the sources consulted. For example, in his Siddhānta Siromani Bhaskara II gives the Earth's circumference as 4967 yojanas and its diameter as 1581 yojanas:

```
proktoyojanasaṅkhyayākuparidhiḥsaptā
ṅganandābḍhayas
tadvyasaḥkubhujaṅgasāyakabhuvothap
rocyateyojanam I
yamyodakpurayohpalāntarahataṃbhuv
eștanaṃbhāmśa h t
tadbhaktasyapurantarādhvanaiha j
ñeyaṃsamamyojanam II
(Arkasomayaji, 1980; Vāsanā, 1929:
bhuparidhi, 1).
```


2.5 The Deśāntara According to the Vakya Karana

According to the Vākya Pañcādhyāyi (Kuppanna Sastry and Sarma, 1962: 255, śl. 16)

```
deśāntarād yojanāḥ syurnāḍya maṇihṛtaṃ
phalam /
tādhanaṃ samarekhāyāḥ
pañcaccedanyathā kșayah
```

the Earth's circumference is 3300 yojanas, which converting to nādyas is $60 / 3300=1 / 55$. The Pañcāsiddhāntikā gives the deśāntara of Pudukottai (latitude: $10^{\circ} 23^{\prime} \mathrm{N}$; longitude: $78^{\circ} 52^{\prime} \mathrm{E}$) as an example (Sarma, 1993). It is 24.4 (E) yojanas from Ujjayini. Then
$\left[\left(L_{1}-L_{u}\right) / 360\right] \times c=\left[\left(78^{\circ} 52^{\prime}-75^{\circ} 45^{\prime}\right) / 360\right] \times c$ $=24.4 \Rightarrow c=2818.396$ yojanas. Now suppose that $2 \pi r \cos \phi=2818.396$ yojanas. Then $2 \pi r \cos \left(10.4^{\circ}\right)=2818.396 /(2 \pi \times 0.98357)$ and $r=456.0546326$.

The late Professor Kuppanna Sastry comments on the Äryapaksa and Saurapaksa in respect of the Earth's equatorial circumference as follows:

> But it is to be noted that in the Ārdharātrika of Āryabhaṭa and in the Khanda Khadyaka, the diameters of the earth is given as 1600 yojanas from which the equatorial circumference got is 5027 yojanas. Therefore the original Saura must have given the same values. The modern Sūrya siddhānta and the siddhāntas that follow it also give the same. From this the latitude circle at or near Ujjaini should be given according to them as $5027 \cos 24^{\circ}=4600$ yojanas. According to the Āryabhațịya which uses a yojana measure one and a half times that of Saura etc., the equatorial circumference would be 3300 yojanas. From this, it is 14° latitude circle that would be 3200 yojanas and not the Ujjaini latitude circle. (see Sarma, 1993: 210).

2.6 The Deśāntara According to the
 Pauliśa Siddhāntha
 Yavanantarajya nādyaḥ sapțā’vantyāṃ tribhāgasaṃyuktāḥ |
 Vārāṇasyam trikrtị̣’ sādhanamanyatra vakṣyāmi || (śl.13).

The time correction for the longitude of Yavanapura (Alexandria) relative to Ujjayinī is 7 nādikās (na) 20 vināḍikās (vin) and to Vārāṇasī is 9 nādikās. Note that according to Kuppanna Sastry (Sarma, 1993) these are respectively ($75^{\circ} 50^{\prime}$ $\left.-30^{\circ}\right) / 6=7 n a 38 v i n$ and $\left(83^{\circ}-30^{\circ}\right) / 6=8 n a$ 50 vin . Therefore the distance between Yavanapura and Ujjayinī is $[(7-20) / 60] \times 3300$ yojanas = 403I20 yojanas, and between Yavanapura and Vārāņasī is $(9 \times 3300) / 60=495$ yojanas.

For Pudukottai (longitude $78^{\circ} 52^{\prime} \mathrm{E}$ and latitude $10^{\circ} 23^{\prime} \mathrm{N}$), $\left(L-L_{0}\right) / 360=24.4 / \cos \phi$ (i.e. $\left.\phi=10^{\circ} 23^{\prime} \mathrm{N}\right) ;\left(L-L_{0}\right) / 360=24.80633 / c$, or $c=$ $24.80633 /(L-L O) \times 360=2865.6$.

Note that the modern value for Earth's circumference is $2 \pi \times 4000=8000 \pi$ miles. In the Saurasiddhānta (Sarma, 1993: 209, śl. 10) 1 nādī $=531 / 3$ yojanas. Therefore, 60 nādīs $=60 \times$ $53.333 \approx 3200$ yojanas. Taking the circumference as 3200 yojanas, we have 60 nādīs $\equiv 3200$ yojanas. Therefore, 1 nādī $=3200 / 60=160 / 3=$ $53^{1} / 3$ yojanas.

According to the Pañcasiddhānta (Sarma, 1993: 52), the longitudes of Kurukshetra and Ujjayinī are $76^{\circ} 51^{\prime}$ and $75^{\circ} 45^{\prime}$ respectively. Then $\left(1^{\circ} 06^{\prime} / 360\right) \times 3300=10.8$ yojanas, and $\left(1^{\circ} 06^{\prime} / 360\right) \times 4800=14.66$ yojanas ≈ 15 yojanas. The number of yojanas along the latitude circle is given by $15 \cos \phi=12.9947 \approx 13$ yojanas.

2.7 The Concept of the Deśāntara and
 Yojana in Indian Astronomy

The Earth's circumference is 360° which equals 4800 yojanas. The longitude of Bangalore is 1° 50^{\prime} east of Ujjayinī). For $1^{\circ} 50^{\prime}$ we have (1° $\left.50^{\prime}\right) / 360 \times 4800=24.26$ yojanas.

For Machalipattanam, $\left[\left(L-L_{0}\right) / 360\right] \times 4800$ yojanas $=(5.366 / 360) \times 4800$ yojanas. Note that along the small circle through Machalipatnam the circumference ≈ 4606.799041 yojanas. Therefore, the distance from Machalipatnam to the Ujjayinì meridian is 69.04677. The circumference of the small circle through a specific place is given by $(2 \pi R) \cos \phi$, where R is the Earth's radius $=4800 \cos \phi$ yojanas.

For Bangalore (present-day Bengaluru), $4800 \cos 13^{\circ}=4676.976$ yojanas. Then, ($1^{\circ} 5^{\prime} /$ $360) \times 4676.976$ yojanas $=23.8179$ yojanas. Taking the Earth's circumference as 3200 yojanas, $23.8179 \times(3200 / 4800)=15.8786$ yojanas.

For Machalipattinam, the circumference of a small circle is $4800 \cos \left(16^{\circ} 11^{\prime}\right)=4609.799$ yojanas. If we take circumference as 39 yojanas, $\left(360^{\circ} \times 39\right) / 5.3667=2626$ yojanas. Therefore, the equatorial circumference is 2616/ $\cos 16^{\circ} 11^{\prime}=2749$ yojanas.

2.8 The Deśāntara According to
 Modern Astronomy

The longitudes of Kāśī and of Ujjayinī are 83° 01^{\prime} and $75^{\circ} 45^{\prime}$ respectively. The difference in longitudes is $7^{\circ} 16^{\prime}$, therefore ($7^{\circ} 16^{\prime} / 360^{\circ}$) \times 4967 = 100115135 yojanas along the equator. The equatorial diameter is 12756 km , the circumference is 40090 km , and the radius is $6378 / 1.6 \mathrm{~km}=3986.25$ miles.

3 CONCLUDING REMARKS

A fairly elaborate analysis of the concept of the deśāntara—resulting in the time of local sunrise due to the Earth's rotation-has been presented in this paper. We have discussed the effect of the difference in longitudes of a given place and the then-adopted central meridian (of Ujjayinī) on the local time.

The linear distance between the places was measured in terms of a unit of distance called a yojana. This unit is defined in terms of the circumference and the diameter of the Earth. We examined important texts like the Āryabhațiyam, Pañcasiddhāntā, Sūryasiddhānta, Khanḍakhādyaka, Siddhanta Śiromni, Grahalāghavam, Karaņakutūhalam, Tantrasañgraha and the Vākya Karana, and we found that the main pakṣas (Schools) adopted different values for the circumference (paridhi) of the Earth. The Āryapakșa adopted a value of 3300 yojanas, the Brāmhapakṣa 4967 yojanas and the Saurapakṣa 4800 yojanas. These values were compared using the modern known values for the equatorial circumference and diameter of the Earth.

The three pakṣas were founded at about the same time (around the sixth century CE), but tended to flourish in different parts of India: the Āryapakṣa in Southern India, the Brāmhapakṣa in western and north-western India, and the Saurapakșa in northern and eastern India. The fact that the two more northerly pakṣas have rather similar values for the circumference of the Earth and that they differ markedly from the value used by the southern pakṣa is interesting, but the precise reasons why the adopted values were so different is not known. Plofker (2009: 70) writes:

The sources of competing parameters and authors' reasons for choosing them are not always clear ... a frequently stated motive is the desire to harmonize astronomical calculations as far as possible with smrti trad-
itions about cosmological time, or to bring them into agreement with observed positions.
Yet these reasons can hardly apply in the case of the circumference of the Earth, so further research is required in order to explain these differences.

4 ACKNOWLEDGEMENTS

We are grateful to Professor Wayne Orchiston for helping finalise this paper.

5 BIBLIOGRAPHY

Arkasomayaji, D. (transl.), 1980. Siddhānta Śiromani of Bhāskaracharya. Tirupati, Kendriya Sanskrit Vidyapeetha.
Chatterjee, B. (ed. and transl.), 1970. The Khanḍakhādyaka (an Astronomical Treatise) of Brahmagupta: with the commentary of Bhattotpala. Two Volumes. New Delhi, Motilal Banarsidass.
Gangooly, P. (ed.), 1989. The Sūryasiddhānta, translated by the Reverend E. Burgess ... and Introduction by P.C. Sengupta. Delhi, Motilal Banarsidass.
Joshi, K. (comm.), 1981. The Grahalāghavam of Gaṇeśa Daivajña, with a commentary by Mallāri and Viśvanātha ... Varanasi, Motilal Banarsidass.
Kuppanna Sastry, T.S., and Sarma, K.V. (eds.), 1962. Vākya Pañcādhyāyi. Madras. K.S. Research Institute.
Kuppanna Sastry, T.S (transl. and notes), 1993. Pañcasiddhāntikā of Varāhamihira. Madras, P.P.S.T. Foundation.
Mishra, A.R. (comm.), 1982. The Makarandasārinī ... Varanasi, Madālasā Publications.
Mishra, S. (transl.), 1991. The Kāranakutūhalam of Bhāskara II, with a commentary by Sumatiharsa and Sudhākara Dvivedi ... Varanasi, Oriental Publishers (Krishnadas Academy).
Pandey, R.C. (ed.), 1994. The Grahalāghavam of Gaṇeśa Daivajña, with a Hindi commentary by Malläri ... Varanasi, Chowkhamba Sanskrit Series.
Parameśvara(ed.), 1957. The Sūryasiddhānta ... Lucknow, K.S. Shukla.
Plofker, K., 2009. Mathematics in India. Princeton, Princeton University Press.
Ramasubramanian, K., and Sriram, M.S., 2011. The Tantrasañgraha of Nīlakanṭha Somayāji. New Delhi, Hindistan Book Agency.
Rao, S. Balachanra, 2000. Ancient Indian Astronomy - Planetary Positions and Eclipses. Delhi, B.R. Publishing.
Rao, S. Balachandra, 2000. Indian Astronomy - An Introduction. Hyderabad, Universities Press.
Rao, S.B., and Uma, S.K. (trans.), 2006. The Grahalāghavam of Ganeśa Daivajña ... New Delhi, Indian National Science Academy.
Rao, S. Balachandra, 2008. Indian Astronomy - A Primer. Bengalaru, Bhavan's Gandhi Centre of Science and Human Values.
Rao, S. Balachandra, and Venugopal, P., 2008. Eclipses in Indian Astronomy. Bangalore, Bhavan's Gandhi Centre of Science and Human Values.
Rao, S. Balachandra, and Venugopal, P., 2009. Transits and Occultations in Indian Astronomy. Bangalore, Bhavan's Gandhi Centre of Science and

Human Values.
Rao, S. Balachandra, 2016. Indian Astronomy Concepts and Procedures. Bengaluru, M.P. Birla Institute of Management.
Rupa, K., Venugopal, P., and Rao, S. Balachandra, 2014. Makarandasārinīand allied Saurapaksa tables -a study. Indian Journal of History of Science, 49, 186-208.
Sambasivasastri, K. (ed.), 1977. The Āryabhatīyam of Āryabhaṭa, with a commentary by Nilakaṇṭha Somasutvan ... Trivandrum, K. Sambasivasastri (reprint).
Sarma, K.V. (trans.), 1993. The Pañcasiddhāntikā of Varāhamihira, English translation and notes by T.S. Kuppana Sastry ... Madras, P.P.S.T. Foundation.
Sastri, C.L.N. (ed.), 2006. The Ganakānanda, Sanskrit text in Telugu script ... Machalipatnam, Chella Lakshmi Narasimha Sastri (reprint).
Sengupta, P.C. (ed. and transl.), 1934. The Khanḍakhādyaka of Brahmagupta. Calcutta, University of Calcutta.
Shukla, K.S. (ed. and transl.), 1985-1986. The Vaṭeśvara Siddhānta \& Gola. New Delhi, INSA.
Shukla, K.S., and Sarma, K.V. (eds.), 1976. The Āryabhațīyam of Āryabhața. New Delhi, Indian National Science Academy.
Tandan, V. (comm.), 1945. The Makarandasārinī ... Bombay, Sri Venkateshwara Press.
Vāsanā (ed.), 1929. The Siddhānta Śiromani of Bhāskara II, with Bhāskara's commentary ... Benaras, Sudhakara Dvivedi (Kashi Skt. Series, No.72).

Professor Padmaja Venugopal has a PhD from Bangalore University. Currently she is Professor and Head of the Department of Mathematics at the SJB Institute of Technology in Bangalore. Her recent publications include Eclipses, Transits, Occultations and Heliacal Rising and Setting of Planets. She has been working in the field of Indian astronomy for the past two decades, and has presented papers at various conferences and published a few papers in the Indian Journal of History of Science and other journals. She worked on the Indian National Science Academy (INSA) research project 'Comparative Study of Planetary Models in Respect of Epicycles in Classical Indian Astronomy vis-à-vis Ptolemaic and Copernican Models'. Currently she is working on another INSA project: 'Gankananda - English Translation, a Critical Analysis \& Comparison with other Indian Astronomical Tables'. She is guiding PhD candidates in the field of astronomy. She has authored books on Eclipses in Indian Astronomy and Transits and Occultations in Indian Astronomy. She presented a stand-alone paper on "Eclipses inscriptional and literary references, a survey" at the
 25th International Congress of History of Science and Technology, in Rio de Janeiro, Brazil, in July 2017.

Associate Professor K. Rupa has an MSc from Bangalore University and a PhD from Anna University, Chennai. The title of her doctoral thesis is: Planetary

Models in Classical Indian Astronomy in Comparison with Ptolemaic, Copernican and Keplerian Models - A Mathematical Analysis. Currently she is an Associate Professor in the Department of Mathematics at the Global Academy of Technology in Bangalore. She has presented papers at various conferences and published a few papers in the Indian Journal of History of Science and other journals. Currently she is working on the INSA research project 'Occultation and Transits in Indian Astronomy - A Mathematical Analysis'. She has co-authored the book Bharathada Suprasidda Ganitajnaru (Famous Indian Mathematicians).

Professor S.K. Uma has an MSc from Bangalore University and PhD from Manipal University. Currently she is a Professor in the Department of Mathematics at the Sir Mokshagundam Visvesvaraya Institute of Technology in Bangalore. She has been working in the field of Indian astronomy for the past two decades and has presented papers at various conferences and published a few papers in the Indian Journal of History of Science and other journals. Her most recent published paper is on the Ahargana according to Makarandasāriṇī, and other Indian astronomical texts. She worked on the Indian National Science Academy research project "MAKARANDASĀRIṆī - English Exposition, A Critical Analysis and Comparison with Other Indian Astronomical Tables". She is guiding PhD candidates in the field of astronomy, and has authored three books on Indian Astronomy.

Professor S. Balachandra Rao has an MSc (Mathematics) from the University of Mysore and a PhD (Fluid Mechanics) from Bangalore University. He served at the National Colleges at Gauribidanur and Bangalore, teaching mathematics for 35 years, and retired in 2002 as Principal. Currently he is (1) Honorary Director, Gandhi Centre of Science and Human Values, Bharatiya Vidya Bhavan, Bengaluru; (2) a Member of the National Commission for History of Science, INSA, New Delhi; and (3) an Honorary Senior Fellow at the National Institute of Advanced Studies (NIAS) in Bengaluru. Professor Rao has been researching in the field of classical Indian astronomy since 1993 under successive research projects from INSA. He has authored, singly and jointly, quite a few papers in reputed journals and books on Indian mathematics and astronomy. The books published so far are about 30, half in English and the remainder in Kannada. The more popular ones among them are: (1) Indian Mathematics and Astronomy-Some Landmarks; (2) Indian Astron-omy-Concepts and Procedures; (3) Eclipses in Indian Astronomy; (4) Transits and Occultations in Indian Astronomy [titles (3) and (4) were co-authored by Dr Padmaja Venugopal]; (5) Grahalaghavam of Ganesha Daivajna, English Translation and Notes; (6) Karanakutuhalam of Bhaskara II, English Translation and Notes [titles (5) and (6) were co-authored by Dr S.K. Uma]; (7) Astrology-Believe it or Not?; (8) Traditions, Science and Society, etc. While title (7) was translated into the Kannada and Marathi languages, title (8) was rendered into Kannada, Telugu and Malayalam versions. The Kannada versions of books (7) and (8) have won awards as "The Best Works of Rational Literature" from the Kannada Sahitya Parishat (Kannada Literary Authority).

